MDSEA: Knowledge Graph Entity Alignment Based on Multimodal Data Supervision

Author:

Fang Jianyong12ORCID,Yan Xuefeng1

Affiliation:

1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, China

2. Jiangsu Automation Research Institute, Lianyungang 222000, China

Abstract

With the development of social media, the internet, and sensing technologies, multimodal data are becoming increasingly common. Integrating these data into knowledge graphs can help models to better understand and utilize these rich sources of information. The basic idea of the existing methods for entity alignment in knowledge graphs is to extract different data features, such as structure, text, attributes, images, etc., and then fuse these different modal features. The entity similarity in different knowledge graphs is calculated based on the fused features. However, the structures, attribute information, image information, text descriptions, etc., of different knowledge graphs often have significant differences. Directly integrating different modal information can easily introduce noise, thus affecting the effectiveness of the entity alignment. To address the above issues, this paper proposes a knowledge graph entity alignment method based on multimodal data supervision. First, Transformer is used to obtain encoded representations of knowledge graph entities. Then, a multimodal supervised method is used for learning the entity representations in the knowledge graph so that the vector representations of the entities contain rich multimodal semantic information, thereby enhancing the generalization ability of the learned entity representations. Finally, the information from different modalities is mapped to a shared low-dimensional subspace, making similar entities closer in the subspace, thus optimizing the entity alignment effect. The experiments on the DBP15K dataset compared with methods such as MTransE, JAPE, EVA, DNCN, etc., all achieve optimal results.

Funder

Joint Fund of National Natural Science Foundation of China and Civil Aviation Administration of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3