Research on Online Review Information Classification Based on Multimodal Deep Learning

Author:

Liu Jingnan1,Sun Yefang1,Zhang Yueyi1ORCID,Lu Chenyuan1

Affiliation:

1. College of Economics and Management, China Jiliang University, Hangzhou 314423, China

Abstract

The incessant evolution of online platforms has ushered in a multitude of shopping modalities. Within the food industry, however, assessing the delectability of meals can only be tentatively determined based on consumer feedback encompassing aspects such as taste, pricing, packaging, service quality, delivery timeliness, hygiene standards, and environmental considerations. Traditional text data mining techniques primarily focus on consumers’ emotional traits, disregarding pertinent information pertaining to the online products themselves. In light of these aforementioned issues in current research methodologies, this paper introduces the Bert BiGRU Softmax model combined with multimodal features to enhance the efficacy of sentiment classification in data analysis. Comparative experiments conducted using existing data demonstrate that the accuracy rate of the model employed in this study reaches 90.9%. In comparison to single models or combinations of three models with the highest accuracy rate of 7.7%, the proposed model exhibits superior accuracy and proves to be highly applicable to online reviews.

Funder

National Social Science Fund of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3