Incorporating Multi-Temporal Remote Sensing and a Pixel-Based Deep Learning Classification Algorithm to Map Multiple-Crop Cultivated Areas

Author:

Wang Xue1234,Zhang Jiahua34ORCID,Wang Xiaopeng3,Wu Zhenjiang4,Prodhan Foyez Ahmed5ORCID

Affiliation:

1. Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518034, China

2. Key Laboratory of Earth Observation of Hainan Province, Hainan Aerospace Information Research Institute, Sanya 572029, China

3. Remote Sensing Information and Digital Earth Center, College of Computer Science and Technology, Qingdao University, Qingdao 266071, China

4. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

5. Department of Agricultural Extension and Rural Development, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh

Abstract

The accurate monitoring of crop areas is essential for food security and agriculture, but accurately extracting multiple-crop distribution over large areas remains challenging. To solve the above issue, in this study, the Pixel-based One-dimensional convolutional neural network (PB-Conv1D) and Pixel-based Bi-directional Long Short-Term Memory (PB-BiLSTM) were proposed to identify multiple-crop cultivated areas using time-series NaE (a combination of NDVI and EVI) as input for generating a baseline classification. Two approaches, Snapshot and Stochastic weighted averaging (SWA), were used in the base-model to minimize the loss function and improve model accuracy. Using an ensemble algorithm consisting of five PB-Conv1D and seven PB-BiLSTM models, the temporal vegetation index information in the base-model was comprehensively exploited for multiple-crop classification and produced the Pixel-Based Conv1D and BiLSTM Ensemble model (PB-CB), and this was compared with the PB-Transformer model to validate the effectiveness of the proposed method. The multiple-crop cultivated area was extracted from 2005, 2010, 2015, and 2020 in North China by using the PB-Conv1D combine Snapshot (PB-CDST) and PB-CB models, which are a performance-optimized single model and an integrated model, respectively. The results showed that the mapping results of the multiple-crop cultivated area derived by PB-CDST (OA: 81.36%) and PB-BiLSTM combined with Snapshot (PB-BMST) (OA: 79.40%) showed exceptional accuracy compared to PB-Transformer combined with Snapshot and SWA (PB-TRSTSA) (OA: 77.91%). Meanwhile, the PB-CB (OA: 83.43%) had the most accuracy compared to the pixel-based single algorithm. The MODIS-derived PB-CB method accurately identified multiple-crop areas for wheat, corn, and rice, showing a strong correlation with statistical data, exceeding 0.7 at the municipal level and 0.6 at the county level.

Funder

Science and Technology Support Plan for Youth Innovation of Colleges and Universities of Shandong Province of China

Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources

Finance Science and Technology Project of Hainan Province

Shandong Key Research and Development Project

2023 Zhonglou District of Changzhou City Science and Technology Research Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3