Natural Ventilation to Manage Ammonia Concentration and Temperature in a Rabbit Barn in Central Mexico

Author:

Cano David Vargas1ORCID,Flores-Velazquez Jorge12ORCID,Garcia Agustín Ruiz1

Affiliation:

1. Water Integral Use and Agriculture Engineering, University of Chapingo, Texcoco 56230, Mexico

2. Hydro Sciences, Colleges de Postgraduates, Montecillo 56264, Mexico

Abstract

The concentration of ammonia (NH3) and the temperature of the air surrounding the rabbit habitat in the farm condition basic health processes such as breathing and feeding. The indoor climate in a rabbit farm is largely conditioned by the ventilation system (air conditioning). The objective of this study was to build a numerical model based on computational fluid dynamics (CFD) in order to evaluate, by numerical simulations, the air dynamics of a rustic farm. After the validation of the computational model, the thermal gradient and ammonia concentration were analyzed under three wind incidence angles (0°, 45°, and 90° with respect to the horizontal Z axis of the facility). The results of the simulations showed that, in the area occupied by the rabbits (AOR), the concentration of ammonia with respect to the source was reduced by 37.3% in the most favorable case (wind direction at 45°), and 21.2% in the least favorable case (wind direction at 0°), and the indoor temperature presented a maximum difference of 2 °C with respect to the outside temperature. Climate control is a more expensive cost in rabbit farm exploitation; dynamics modulation can serve as an auxiliary tool for reducing health risks in rabbits. The use of models based on fluid dynamics allowed us to understand the efficiency of the ventilation system, which must be increased to reduce the found temperature gradient. Through numerical simulation it will be possible to find alternatives to increase the ventilation rate.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3