Integrating Machine Learning and MLOps for Wind Energy Forecasting: A Comparative Analysis and Optimization Study on Türkiye’s Wind Data

Author:

Oyucu Saadin1ORCID,Aksöz Ahmet2ORCID

Affiliation:

1. Department of Computer Engineering, Adıyaman University, Adıyaman 02040, Türkiye

2. MOBILERS Team, Sivas Cumhuriyet University, Sivas 58140, Türkiye

Abstract

This study conducted a detailed comparative analysis of various machine learning models to enhance wind energy forecasts, including linear regression, decision tree, random forest, gradient boosting machine, XGBoost, LightGBM, and CatBoost. Furthermore, it developed an end-to-end MLOps pipeline leveraging SCADA data from a wind turbine in Türkiye. This research not only compared models using the RMSE metric for selection and optimization but also explored in detail the impact of integrating machine learning with MLOps on the precision of energy production forecasts. It investigated the suitability and efficiency of ML models in predicting wind energy with MLOps integration. The study explored ways to improve LightGBM algorithm performance through hyperparameter tuning and Docker utilization. It also highlighted challenges in speeding up MLOps development and deployment processes. Model performance was assessed using the RMSE metric, conducting a comparative evaluation across different models. The findings revealed that the RMSE values among the regression models ranged from 460 kW to 192 kW. Focusing on enhancing LightGBM, the research decreased the RMSE value to 190.34 kW. Despite facing technical and operational hurdles, the implementation of MLOps was proven to enhance the speed (latency of 9 ms), reliability (through Docker encapsulation), and scalability (using Docker swarm) of machine learning endeavors.

Funder

European Union’s Horizon Europe research and innovation program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of SARIMA Models for Forecasting Electricity Demand;2024 12th International Conference on Smart Grid (icSmartGrid);2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3