Research on Intelligent Identification Algorithm for Steel Wire Rope Damage Based on Residual Network

Author:

Han Jialin1,Zhang Yiqing1ORCID,Feng Zesen1,Zhao Ling1

Affiliation:

1. College of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng 252000, China

Abstract

As a load-bearing tool, steel wire rope plays an important role in industrial production. Therefore, diagnosing the fracture and damage of steel wire ropes is of great significance for ensuring their safe operation. However, the detection and identification of wire rope breakage damage mainly focus on identifying external damage characteristics, while research on inspecting internal breakage damage is still relatively limited. To address the challenge, an intelligent detecting method is proposed in this paper for diagnosing internal wire breakage damage, and it introduces residual modules to enhance the network’s feature extraction ability. Firstly, time–frequency analysis techniques are used to convert the extracted one-dimensional magnetic flux leakage (MFL) signal into a two-dimensional time–frequency map. Secondly, the focus of this article is on constructing a residual network to identify the internal damage accurately with the features of the time–frequency map of the MFL signal being automatically extracted. Finally, the effectiveness of the proposed method in identifying broken wires is verified through comparative experiments on detecting broken wires in steel wire ropes. Three common recognition methods, the backpropagation (BP) neural network, the support vector machine (SVM), and the convolutional neural network (CNN), are used as comparisons. The experimental results show that the residual network recognition method can effectively identify internal and external wire breakage faults in steel wire ropes, which is of great significance for achieving quantitative detection of steel wire ropes.

Funder

Doctoral Start-up Funds

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3