The Application of the Random Time Transformation Method to Estimate Richards Model for Tree Growth Prediction

Author:

Cornejo Óscar1ORCID,Muñoz-Herrera Sebastián1ORCID,Baesler Felipe2ORCID,Rebolledo Rodrigo1ORCID

Affiliation:

1. Departament of Industrial Engineering, Faculty of Engineering, Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepcion 4090541, Chile

2. Departament of Industrial Engineering, Faculty of Engineering, Universidad del Bio Bio, Avenida Ignacio Collao 1202, Concepcion 4051381, Chile

Abstract

To model dynamic systems in various situations results in an ordinary differential equation of the form dydt=g(y,t,θ), where g denotes a function and θ stands for a parameter or vector of unknown parameters that require estimation from observations. In order to consider environmental fluctuations and numerous uncontrollable factors, such as those found in forestry, a stochastic noise process ϵt may be added to the aforementioned equation. Thus, a stochastic differential equation is obtained: dYtdt=f(Yt,t,θ)+ϵt. This paper introduces a method and procedure for parameter estimation in a stochastic differential equation utilising the Richards model, facilitating growth prediction in a forest’s tree population. The fundamental concept of the approach involves assuming that a deterministic differential equation controls the development of a forest stand, and that randomness comes into play at the moment of observation. The technique is utilised in conjunction with the logistic model to examine the progression of an agricultural epidemic induced by a virus. As an alternative estimation method, we present the Random Time Transformation (RTT) method. Thus, this paper’s primary contribution is the application of the RTT method to estimate the Richards model, which has not been conducted previously. The literature often uses the logistic or Gompertz models due to difficulties in estimating the parameter form of the Richards model. Lastly, we assess the effectiveness of the RTT Method applied to the Chapman–Richards model using both simulated and real-life data.

Funder

ANID InES Ciencia Abierta

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3