A Novel Neural Network Architecture Using Automated Correlated Feature Layer to Detect Android Malware Applications

Author:

Alabrah Amerah1ORCID

Affiliation:

1. Department of Information Systems, College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

Android OS devices are the most widely used mobile devices globally. The open-source nature and less restricted nature of the Android application store welcome malicious apps, which present risks for such devices. It is found in the security department report that static features such as Android permissions, manifest files, and API calls could significantly reduce malware app attacks on Android devices. Therefore, an automated method for malware detection should be installed on Android devices to detect malicious apps. These automated malware detection methods are developed using machine learning methods. Previously, many studies on Android OS malware detection using different feature selection approaches have been proposed, indicating that feature selection is a widely used concept in Android malware detection. The feature dependency and the correlation of the features enable the malicious behavior of an app to be detected. However, more robust feature selection using automated methods is still needed to improve Android malware detection methods. Therefore, this study proposed an automated ANN-method-based Android malware detection method. To validate the proposed method, two public datasets were used in this study, namely the CICInvestAndMal2019 and Drebin/AMD datasets. Both datasets were preprocessed via their static features to normalize the features as binary values. Binary values indicate that certain permissions in any app are enabled (1) or disabled (0). The transformed feature sets were given to the ANN classifier, and two main experiments were conducted. In Experiment 1, the ANN classifier used a simple input layer, whereas a five-fold cross-validation method was applied for validation. In Experiment 2, the proposed ANN classifier used a proposed feature selection layer. It includes selected features only based on correlation or dependency with respect to benign or malware apps. The proposed ANN-method-based results are significant, improved, and robust and were better than those presented in previous studies. The overall results of using the five-fold method on the CICInvestAndMal2019 dataset were a 95.30% accuracy, 96% precision, 98% precision, and 92% F1-score. Likewise, on the AMD/Drebin dataset, the overall scores were a 99.60% accuracy, 100% precision and recall, and 99% F1-score. Furthermore, the computational cost of both experiments was calculated to prove the performance improvement brought about by the proposed ANN classifier compared to the simple ANN method with the same time of training and prediction.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3