Stochastic Approaches Systems to Predictive and Modeling Chilean Wildfires

Author:

de la Fuente-Mella Hanns1ORCID,Elórtegui-Gómez Claudio2,Umaña-Hermosilla Benito3,Fonseca-Fuentes Marisela3ORCID,Ríos-Vásquez Gonzalo1

Affiliation:

1. Instituto de Estadística, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340031, Chile

2. Escuela de Periodismo, Facultad de Ciencias Económicas y Administrativas, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile

3. Departamento de Gestión Empresarial, Facultad de Ciencias Empresariales, Universidad del Bío-Bío, Chillán 2463334, Chile

Abstract

Whether due to natural causes or human carelessness, forest fires have the power to cause devastating damage, alter the habitat of animals and endemic species, generate insecurity in the population, and even affect human settlements with significant economic losses. These natural and social disasters are very difficult to control, and despite the multidisciplinary human effort, it has not been possible to create efficient mechanisms to mitigate the effects, and they have become the nightmare of every summer season. This study focuses on forecast models for fire measurements using time-series data from the Chilean Ministry of Agriculture. Specifically, this study proposes a comprehensive methodology of deterministic and stochastic time series to forecast the fire measures required by the programs of the National Forestry Corporation (CONAF). The models used in this research are among those commonly applied for time-series data. For the number of fires series, an Autoregressive Integrated Moving Average (ARIMA) model is selected, while for the affected surface series, a Seasonal Autoregressive Integrated Moving Average (SARIMA) model is selected, in both cases due to the lowest error metrics among the models fitted. The results provide evidence on the forecast for the number of national fires and affected national surface measured by a series of hectares (ha). For the deterministic method, the best model to predict the number of fires and affected surface is double exponential smoothing with damped parameter; for the stochastic approach, the best model for forecasting the number of fires is an ARIMA (2,1,2); and for affected surface, a SARIMA(1,1,0)(2,0,1)4, forecasting results are determined both with stochastic models due to showing a better performance in terms of error metrics.

Funder

Vice-Rectory for Research and Advanced Studies of the Pontificia Universidad Católica de Valparaíso, Chile

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference90 articles.

1. Incendios Forestales, un fenómeno global;Francos;Biblio 3w Rev. BibliográFica Geogr. Cienc. Soc.,2018

2. Cambio global e incendios forestales: Perspectivas en la Europa Meridional;Recur. Rurais Rev. Of. Inst. Biodiversidade Agrar. Desenvolv. Rural. (Ibader),2009

3. Aguilera Sánchez, M. (2015). El réGimen juríDico de los Incendios Forestales, Universitat Rovira i Virgili, Publicacions URV.

4. Impactos en el riesgo potencial de incendios debidos al cambio climático;Moreno;Convivir con los Incendios Forestales: Lo que nos Revela la Ciencia,2009

5. Fadaei, Z., Kavian, A., Solaimani, K., Sarabsoreh, L.Z., Kalehhouei, M., Zuazo, V.H.D., and Rodrigo-Comino, J. (2022). The Response of Soil Physicochemical Properties in the Hyrcanian Forests of Iran to Forest Fire Events. Fire, 5.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3