Stochastic Approaches Systems to Predictive and Modeling Chilean Wildfires
-
Published:2023-10-19
Issue:20
Volume:11
Page:4346
-
ISSN:2227-7390
-
Container-title:Mathematics
-
language:en
-
Short-container-title:Mathematics
Author:
de la Fuente-Mella Hanns1ORCID, Elórtegui-Gómez Claudio2, Umaña-Hermosilla Benito3, Fonseca-Fuentes Marisela3ORCID, Ríos-Vásquez Gonzalo1
Affiliation:
1. Instituto de Estadística, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340031, Chile 2. Escuela de Periodismo, Facultad de Ciencias Económicas y Administrativas, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile 3. Departamento de Gestión Empresarial, Facultad de Ciencias Empresariales, Universidad del Bío-Bío, Chillán 2463334, Chile
Abstract
Whether due to natural causes or human carelessness, forest fires have the power to cause devastating damage, alter the habitat of animals and endemic species, generate insecurity in the population, and even affect human settlements with significant economic losses. These natural and social disasters are very difficult to control, and despite the multidisciplinary human effort, it has not been possible to create efficient mechanisms to mitigate the effects, and they have become the nightmare of every summer season. This study focuses on forecast models for fire measurements using time-series data from the Chilean Ministry of Agriculture. Specifically, this study proposes a comprehensive methodology of deterministic and stochastic time series to forecast the fire measures required by the programs of the National Forestry Corporation (CONAF). The models used in this research are among those commonly applied for time-series data. For the number of fires series, an Autoregressive Integrated Moving Average (ARIMA) model is selected, while for the affected surface series, a Seasonal Autoregressive Integrated Moving Average (SARIMA) model is selected, in both cases due to the lowest error metrics among the models fitted. The results provide evidence on the forecast for the number of national fires and affected national surface measured by a series of hectares (ha). For the deterministic method, the best model to predict the number of fires and affected surface is double exponential smoothing with damped parameter; for the stochastic approach, the best model for forecasting the number of fires is an ARIMA (2,1,2); and for affected surface, a SARIMA(1,1,0)(2,0,1)4, forecasting results are determined both with stochastic models due to showing a better performance in terms of error metrics.
Funder
Vice-Rectory for Research and Advanced Studies of the Pontificia Universidad Católica de Valparaíso, Chile
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference90 articles.
1. Incendios Forestales, un fenómeno global;Francos;Biblio 3w Rev. BibliográFica Geogr. Cienc. Soc.,2018 2. Cambio global e incendios forestales: Perspectivas en la Europa Meridional;Recur. Rurais Rev. Of. Inst. Biodiversidade Agrar. Desenvolv. Rural. (Ibader),2009 3. Aguilera Sánchez, M. (2015). El réGimen juríDico de los Incendios Forestales, Universitat Rovira i Virgili, Publicacions URV. 4. Impactos en el riesgo potencial de incendios debidos al cambio climático;Moreno;Convivir con los Incendios Forestales: Lo que nos Revela la Ciencia,2009 5. Fadaei, Z., Kavian, A., Solaimani, K., Sarabsoreh, L.Z., Kalehhouei, M., Zuazo, V.H.D., and Rodrigo-Comino, J. (2022). The Response of Soil Physicochemical Properties in the Hyrcanian Forests of Iran to Forest Fire Events. Fire, 5.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|