Local Sensitivity of Failure Probability through Polynomial Regression and Importance Sampling

Author:

Chiron Marie1,Morio Jérôme1ORCID,Dubreuil Sylvain1

Affiliation:

1. ONERA/DTIS, Université de Toulouse, F-31055 Toulouse, France

Abstract

Evaluating the failure probability of a system is essential in order to assess its reliability. This probability may significantly depend on deterministic parameters such as distribution parameters or design parameters. The sensitivity of the failure probability with regard to these parameters is then critical for the reliability analysis of the system or in reliability-based design optimization. Here, we introduce a new approach to estimate the failure probability derivatives with respect to deterministic inputs, where the bias can be controlled and the simulation budget is kept low. The sensitivity estimate is obtained as a byproduct of a heteroscedastic polynomial regression with a database built with simulation methods. The polynomial comes from a Taylor series expansion of the approximated sensitivity domain integral obtained with the Weak approach. This new methodology is applied to two engineering use cases with the importance sampling strategy.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference28 articles.

1. Chabridon, V. (2018). Reliability-Oriented Sensitivity Analysis under Probabilistic Model Uncertainty–Application to Aerospace Systems. [Ph.D. Thesis, Université Clermont Auvergne].

2. Probabilistic sensitivity-based ranking of damage tolerance analysis elements;Millwater;J. Aircr.,2010

3. Surrogate-assisted reliability-based design optimization: A survey and a unified modular framework;Moustapha;Struct. Multidiscip. Optim.,2019

4. Reliability sensitivity estimation with sequential importance sampling;Papaioannou;Struct. Saf.,2018

5. A priori error estimates for local reliability-based sensitivity analysis with Monte Carlo Simulation;Torii;Reliab. Eng. Syst. Saf.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An efficient approximation algorithm for variance global sensitivity by Bayesian updating;International Journal of Mechanics and Materials in Design;2024-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3