On Hopf and Fold Bifurcations of Jerk Systems

Author:

Lăzureanu Cristian12ORCID,Cho Jinyoung12

Affiliation:

1. Department of Mathematics, Politehnica University Timişoara, P-ta Victoriei 2, 300006 Timişoara, Romania

2. Department of Mathematics, Faculty of Mathematics and Computer Science, West University of Timişoara, Parvan Blv. 4, 300223 Timişoara, Romania

Abstract

In this paper we consider a jerk system x˙=y,y˙=z,z˙=j(x,y,z,α), where j is an arbitrary smooth function and α is a real parameter. Using the derivatives of j at an equilibrium point, we discuss the stability of that point, and we point out some local codim-1 bifurcations. Moreover, we deduce jerk approximate normal forms for the most common fold bifurcations.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Cusp Bifurcation of a Jerk System;International Journal of Bifurcation and Chaos;2024-07-20

2. Bifurcation analysis with chaotic attractor for a special case of jerk system;Physica Scripta;2024-07-18

3. Bifurcation analysis with self-excited and hidden attractors for a chaotic jerk system;Journal of Mathematics and Computer Science;2024-05-22

4. On a Family of Hamilton–Poisson Jerk Systems;Mathematics;2024-04-22

5. Codimension-2 bifurcations of a generalized three-dimensional cubic jerk system;Computational and Applied Mathematics;2024-04-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3