Implementation of Physical Reservoir Computing in a TaOx/FTO-Based Memristor Device

Author:

Ju Dongyeol12,Ahn Junyoung1,Ho Jungwoo1,Kim Sungjun2,Chung Daewon1ORCID

Affiliation:

1. Department of Advanced Battery Convergence Engineering, Dongguk University, Seoul 04620, Republic of Korea

2. Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, Republic of Korea

Abstract

As one of the solutions to overcome the current problems of computing systems, a resistive switching device, the TiN/TaOx/fluorine-doped tin oxide (FTO) stacked device, was fabricated to investigate its capability in embodying neuromorphic computing. The device showed good uniformity during the resistive switching phenomenon under time and cycle-to-cycle dependent switching, which may be due to the oxygen reservoir characteristics of the FTO bottom electrode, storing oxygen ions during resistive switching and enhancing the device property. Based on the uniform switching phenomenon of the TiN/TaOx/FTO device, the pulse applications were performed to seek its ability to mimic the biological brain. It was revealed that the volatile and non-volatile nature of the device can be altered by controlling the pulse stimuli, where strong stimuli result in long-term memory while weak stimuli result in short-term memory. To further investigate the key functions of the biological brain, various learning rules such as paired-pulse facilitation, excitatory postsynaptic current, potentiation and depression, spike-rate dependent plasticity, and spike-time dependent plasticity were tested, with reservoir computing implemented based on the volatile characteristic of the TiN/TaOx/FTO device.

Funder

National Research Foundation of Korea

Korean government

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3