The Maximum Correntropy Criterion-Based Identification for Fractional-Order Systems under Stable Distribution Noises

Author:

Lu Yao1ORCID

Affiliation:

1. School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China

Abstract

This paper studies the identification for fractional-order systems (FOSs) under stable distribution noises. First, the generalized operational matrix of block pulse functions is used to convert the identified system into an algebraic one. Then, the conventional least mean square (LMS) criterion is replaced by the maximum correntropy criterion (MCC) to restrain the effect of noises, and a MCC-based algorithm is designed to perform the identification. To verify the superiority of the proposed method, the identification accuracy is examined when the noise follows different types of stable distributions. In addition, the impact of parameters of stable distribution on identification accuracy is discussed. It is shown that when the impulse of noise increases, the identification error becomes larger, but the proposed algorithm is always superior to its LMS counterpart. Moreover, the location parameter of stable distribution noise has a significant impact on the identification accuracy.

Funder

The Natural Science Foundation of Hebei Province

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3