High-Pass-Kernel-Driven Content-Adaptive Image Steganalysis Using Deep Learning

Author:

Agarwal Saurabh12ORCID,Kim Hyenki2,Jung Ki-Hyun2ORCID

Affiliation:

1. Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida 201313, India

2. Department of Software Convergence, Andong National University, Andong 36729, Republic of Korea

Abstract

Digital images cannot be excluded as part of a popular choice of information representation. Covert information can be easily hidden using images. Several schemes are available to hide covert information and are known as steganography schemes. Steganalysis schemes are applied on stego-images to assess the strength of steganography schemes. In this paper, a new steganalysis scheme is presented to detect stego-images. Predefined kernels guide the set of a conventional convolutional layer, and the tight cohesion provides completely guided training. The learning rate of convolutional layers with predefined kernels is higher than the global learning rate. The higher learning rate of the convolutional layers with predefined kernels assures adaptability according to network training, while still maintaining the basic attributes of high-pass kernels. The Leaky ReLU layer is exploited against the ReLU layer to boost the detection performance. Transfer learning is applied to enhance detection performance. The deep network weights are initialized using the weights of the trained network from high-payload stego-images. The strength of the proposed scheme is verified on the HILL, Mi-POD, S-UNIWARD, and WOW content-adaptive steganography schemes. The results are overwhelming and better than the existing steganalysis schemes.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3