A Common Knowledge-Driven Generic Vision Inspection Framework for Adaptation to Multiple Scenarios, Tasks, and Objects

Author:

Zhao Delong1,Kong Feifei1,Lv Nengbin1,Xu Zhangmao1ORCID,Du Fuzhou1

Affiliation:

1. School of Mechanical Engineering and Automation, Beihang University, 37 College Road, Haidian District, Beijing 100191, China

Abstract

The industrial manufacturing model is undergoing a transformation from a product-centric model to a customer-centric one. Driven by customized requirements, the complexity of products and the requirements for quality have increased, which pose a challenge to the applicability of traditional machine vision technology. Extensive research demonstrates the effectiveness of AI-based learning and image processing on specific objects or tasks, but few publications focus on the composite task of the integrated product, the traceability and improvability of methods, as well as the extraction and communication of knowledge between different scenarios or tasks. To address this problem, this paper proposes a common, knowledge-driven, generic vision inspection framework, targeted for standardizing product inspection into a process of information decoupling and adaptive metrics. Task-related object perception is planned into a multi-granularity and multi-pattern progressive alignment based on industry knowledge and structured tasks. Inspection is abstracted as a reconfigurable process of multi-sub-pattern space combination mapping and difference metric under appropriate high-level strategies and experiences. Finally, strategies for knowledge improvement and accumulation based on historical data are presented. The experiment demonstrates the process of generating a detection pipeline for complex products and continuously improving it through failure tracing and knowledge improvement. Compared to the (1.767°, 69.802 mm) and 0.883 obtained by state-of-the-art deep learning methods, the generated pipeline achieves a pose estimation ranging from (2.771°, 153.584 mm) to (1.034°, 52.308 mm) and a detection rate ranging from 0.462 to 0.927. Through verification of other imaging methods and industrial tasks, we prove that the key to adaptability lies in the mining of inherent commonalities of knowledge, multi-dimensional accumulation, and reapplication.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference100 articles.

1. Deep learning for anomaly detection: A review;Pang;ACM Comput. Surv.,2021

2. Deep learning for smart manufacturing: Methods and applications;Wang;J. Manuf. Syst.,2018

3. A doubt–confirmation-based visual detection method for foreign object debris aided by assembly models;Kong;Trans. Can. Soc. Mech. Eng.,2023

4. Introduction and configuration of a collaborative robot in an assembly task as a means to decrease occupational risks and increase efficiency in a manufacturing company;Robot. Comput. Manuf.,2018

5. Vision based navigation for omni-directional mobile industrial robot;Guo;Procedia Comput. Sci.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3