Greenhouse Gas Emission Offsets of Forest Residues for Bioenergy in Queensland, Australia

Author:

Garvie Leanda C.ORCID,Roxburgh Stephen H.,Ximenes Fabiano A.

Abstract

Harnessing sustainably sourced forest biomass for renewable energy is well-established in some parts of the developed world. Forest-based bioenergy has the potential to offset carbon dioxide emissions from fossil fuels, thereby playing a role in climate change mitigation. Despite having an established commercial forestry industry, with large quantities of residue generated each year, there is limited use for forest biomass for renewable energy in Queensland, and Australia more broadly. The objective of this study was to identify the carbon dioxide mitigation potential of replacing fossil fuels with bioenergy generated from forest harvest residues harnessed from commercial plantations of Pinus species in southeast Queensland. An empirical-based full carbon accounting model (FullCAM) was used to simulate the accumulation of carbon in harvest residues. The results from the FullCAM modelling were further analysed to identify the energy substitution and greenhouse gas (GHG) emissions offsets of three bioenergy scenarios. The results of the analysis suggest that the greatest opportunity to avoid or offset emissions is achieved when combined heat and power using residue feedstocks replaces coal-fired electricity. The results of this study suggest that forest residue bioenergy is a viable alternative to traditional energy sources, offering substantive emission reductions, with the potential to contribute towards renewable energy and emission reduction targets in Queensland. The approach used in this case study will be valuable to other regions exploring bioenergy generation from forest or other biomass residues.

Publisher

MDPI AG

Subject

Forestry

Reference69 articles.

1. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,2021

2. 4 Charts Explain Greenhouse Gas Emissions by Countries and Sectorshttps://www.wri.org/insights/4-charts-explain-greenhouse-gas-emissions-countries-and-sectors

3. Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty,2021

4. Quarterly Update of Australia’s National Greenhouse Gas Inventory: March 2021,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3