Structure and Magnetic Properties of Bulk Synthesized Mn2−xFexP1−ySiy Compounds from Magnetization, 57Fe Mössbauer Spectroscopy, and Electronic Structure Calculations

Author:

Fruchart Daniel,Haj-Khlifa Sonia,de Rango Patricia,Balli Mohamed,Zach Ryszard,Chajec Wieslaw,Fornal Piotr,Stanek Jan,Kaprzyk Stanislaw,Tobola Janusz

Abstract

The series of Mn2−xFexP1−ySiy types of compounds form one of the most promising families of magnetocaloric materials in term of performances and availability of the elemental components. Potential for large scale application needs to optimize the synthesis process, and an easy and rather fast process here described is based on the use of two main type of precursors, providing the Fe-P and Mn-Si proportions. The series of Mn2−xFexP1−ySiy compounds were synthesized and carefully investigated for their crystal structure versus temperature and compared interestingly with earlier results. A strong magnetoelastic effect accompanying the 1st order magnetic transition—as well as the parent phosphide–arsenides—was related to the relative stability of both the Fe magnetic polarization and the Fe–Fe exchange couplings. In order to better understand this effect, we propose a local distortion index of the non-metal tetrahedron hosting Fe atoms. Besides, from Mn-rich (Si-rich) to Fe-rich (P-rich) compositions, it is shown that the magnetocaloric phenomenon can be established on demand below and above room temperature. Excellent performance compounds were realized in terms of magnetic entropy ΔSm and adiabatic temperature ΔTad variations. Since from literature it was seen that the magnetic performances are very sensitive to the synthesis process, correspondingly here a new effective process is proposed. Mössbauer spectroscopy analysis was performed on Mn-rich, equi-atomic Mn-Fe, and Fe-rich compounds, allowing determination of the distribution of hyperfine fields setting on Fe in the tetrahedral and pyramidal sites, respectively. Electronic structure calculations confirmed the scheme of metal and non-metal preferential ordering, respectively. Moreover, the local magnetic moments were derived, in fair agreement with both the experimental magnetization and the Fe contributions, as determined by Mössbauer spectroscopy.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3