Multifunctional Molecular Magnets: Magnetocaloric Effect in Octacyanometallates

Author:

Fitta Magdalena,Pełka Robert,Konieczny Piotr,Bałanda MariaORCID

Abstract

Octacyanometallate-based compounds displaying a rich pallet of interesting physical and chemical properties, are key materials in the field of molecular magnetism. The [M(CN)8]n− complexes, (M = WV, MoV, NbIV), are universal building blocks as they lead to various spatial structures, depending on the surrounding ligands and the choice of the metal ion. One of the functionalities of the octacyanometallate-based coordination polymers or clusters is the magnetocaloric effect (MCE), consisting in a change of the material temperature upon the application of a magnetic field. In this review, we focus on different approaches to MCE investigation. We present examples of magnetic entropy change ΔSm and adiabatic temperature change ΔTad, determined using calorimetric measurements supplemented with the algebraic extrapolation of the data down to 0 K. At the field change of 5T, the compound built of high spin clusters Ni9[W(CN)8]6 showed a maximum value of −ΔSm equal to 18.38 J·K−1 mol−1 at 4.3 K, while the corresponding maximum ΔTad = 4.6 K was attained at 2.2 K. These values revealed that this molecular material may be treated as a possible candidate for cryogenic magnetic cooling. Values obtained for ferrimagnetic polymers at temperatures close to their magnetic ordering temperatures, Tc, were lower, i.e., −ΔSm = 6.83 J·K−1 mol−1 (ΔTad = 1.42 K) and −ΔSm = 4.9 J·K−1 mol−1 (ΔTad = 2 K) for {[MnII(pyrazole)4]2[NbIV(CN)8]·4H2O}n and{[FeII(pyrazole)4]2[NbIV(CN)8]·4H2O}n, respectively. MCE results have been obtained also for other -[Nb(CN)8]-based manganese polymers, showing significant Tc dependence on pressure or the remarkable magnetic sponge behaviour. Using the data obtained for compounds with different Tc, due to dissimilar ligands or other phase of the material, the ΔSm ~ Tc−2/3 relation stemming from the molecular field theory was confirmed. The characteristic index n in the ΔSm ~ ΔHn dependence, and the critical exponents, related to n, were determined, pointing to the 3D Heisenberg model as the most adequate for the description of these particular compounds. At last, results of the rotating magnetocaloric effect (RMCE), which is a new technique efficient in the case of layered magnetic systems, are presented. Data have been obtained and discussed for single crystals of two 2D molecular magnets: ferrimagnetic {MnII(R-mpm)2]2[NbIV(CN)8]}∙4H2O (mpm = α-methyl-2-pyridinemethanol) and a strongly anisotropic (tetren)Cu4[W(CN)8]4 bilayered magnet showing the topological Berezinskii-Kosterlitz-Thouless transition.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference75 articles.

1. Molecular Magnetism;Kahn,1993

2. Molecular Nanomagnets;Gatteschi,2003

3. Molecular Magnets—Physics and Applications;Bartolomé,2014

4. Molecular Magnetic Materials—Concepts and Applications;Sieklucka,2017

5. Magnetic and reversible magnetocaloric properties of (Gd1−xDyx)4Co3 ferrimagnets

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3