Abstract
The full 207 Pb chemical shift (CS) tensor of lead in the mineral anglesite, PbSO 4 , was determined from orientation-dependent nuclear magnetic resonance (NMR) spectra of a large natural single crystal, using a global fit over two rotation patterns. The resulting tensor is characterised by the reduced anisotropy Δ δ = ( - 327 ± 4 ) ppm, asymmetry η C S = 0 . 529 ± 0 . 002 , and δ i s o = ( - 3615 ± 3 ) ppm, with the isotropic chemical shift δ i s o also verified by magic-angle spinning NMR on a polycrystalline sample. The initially unknown orientation of the mounted single crystal was included in the global data fit as well, thus obtaining it from NMR data only. By use of internal crystal symmetries, the amount of data acquisition and processing for determination of the CS tensor and crystal orientation was reduced. Furthermore, a linear correlation between the 207 Pb isotropic chemical shift and the shortest Pb–O distance in the co-ordination sphere of Pb 2 + solely surrounded by oxygen has been established for a large database of lead-bearing natural minerals.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献