The State of the Art and New Insight into Combined Finite–Discrete Element Modelling of the Entire Rock Slope Failure Process

Author:

An HuamingORCID,Fan Yuqing,Liu HongyuanORCID,Cheng Yinyao,Song Yushan

Abstract

The stability of rock slopes is of significance, as even the slightest slope failure can result in damage to infrastructure and catastrophes for human beings. Thus, this article focuses on the review of the current techniques available for rock slope stability analysis. The rock slope stability techniques can be classified as conventional methods and numerical methods. The advantages and limitations of the conventional method are briefly reviewed. The numerical methods mainly included three types, i.e., continuum methods, discontinuum methods, and the combined/hybrid continuum–discontinuum methods. This article pays more attention to the last type. The combined/hybrid finite–discrete element method (FDEM), which might be the most widely used continuum–discontinuum method, is introduced and we illustrated its abilities in modelling the entire rock slope failure process. The fundamental principles of FDEM, i.e., the contact interaction of the discrete bodies and the transition from continuum to discontinuum, are introduced in detail. The abilities of the FDEM in modelling the rock slope failure process are calibrated by modelling the entire typical rock slope failure process. Then, the application of the FDEM in the analysis of slope stability is introduced and discussed. Finally, the authors give insight into the GPGUP-parallelized FDEM modelling of the high rock slope failure process by the implementation of the strength reduction method (SRM). It is concluded that the FDEM can effectively model the entire rock slope failure process, even without the implantation of any slope modes, and the GPGUP-parallelized FDEM is a promising tool in the study and application of rock slope stabilities.

Funder

Start-Up Fund for Talent of Kunming University of Science and Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference57 articles.

1. Rock Slope Engineering;Wyllie,2004

2. Stability analysis of stratified rock slopes with spatially variable strength parameters: the case of Qianjiangping landslide

3. Landslides: Investigation and Mitigation. Chapter 15—Rock Slope Stability Analysis;Norrish,1996

4. A critical review of rock slope failure mechanisms: The importance of structural geology

5. Slope Stability and Stabilization Methods;Abramson,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3