Abstract
As we know, climate change and climate variability significantly influence the most important component of global hydrological cycle, i.e., rainfall. The study pertaining to change in the spatio-temporal patterns of rainfall dynamics is crucial to take appropriate actions for managing the water resources at regional level and to prepare for extreme events such as floods and droughts. Therefore, our study has investigated the spatio-temporal distribution and performance of seasonal rainfall for all districts of Haryana, India. The gridded rainfall datasets of 120 years (1901 to 2020) from the India Meteorological Department (IMD) were categorically analysed and examined with statistical results using mean rainfall, rainfall deviation, moving-average, rainfall categorization, rainfall trend, correlation analysis, probability distribution function, and climatology of heavy rainfall events. During each season, the eastern districts of Haryana have received more rainfall than those in its western equivalent. Rainfall deviation has been positive during the pre-monsoon season, while it has been negative for all remaining seasons during the third quad-decadal time (QDT3, covering the period of 1981–2020); rainfall has been declining in most of Haryana’s districts during the winter, summer monsoon, and post-monsoon seasons in recent years. The Innovative Trend Analysis (ITA) shows a declining trend in rainfall during the winter, post-monsoon, and summer monsoon seasons while an increasing trend occurs during the pre-monsoon season. Heavy rainfall events (HREs) were identified for each season from the last QDT3 (1981–2020) based on the available data and their analysis was done using European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis Interim (ERA-Interim), which helped in understanding the dynamics of atmospheric parameters during HREs. Our findings are highlighting the qualitative and quantitative aspects of seasonal rainfall dynamics at the districts level in Haryana state. This study is beneficial in understanding the impact of climate change and climate variability on rainfall dynamics in Haryana, which may further guide the policymakers and beneficiaries for optimizing the use of hydrological resources.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献