No-Tillage Combined with Appropriate Amount of Straw Returning Increased Soil Biochemical Properties

Author:

Chen Wanhua,Yuan Wei,Wang Jie,Wang Ziyang,Zhou Zhengping,Liu Shiping

Abstract

(1) Background: Few studies have focused on the interaction of tillage and straw returning on soil carbon and nitrogen. Therefore, this study was conducted for investigating the effects of tillage and straw returning on soil biochemical properties under a rice–wheat double cropping system; (2) Methods: Six treatments were set up to determine soil biochemical properties, including no-tillage with all straw returning (NTS), wheat plow tillage and rice no-tillage with half straw returning (RT1), wheat no-tillage and rice plow tillage with half straw returning (RT2), plow tillage with all straw returning (CTS), less tillage with half straw returning (MTS), and plow tillage with no straw returning (CT); (3) Results: Straw returning increased soil microbial biomass carbon (SMBC) and soil microbial biomass nitrogen (SMBN), but had no significant effects on total nitrogen (TN) and soil organic carbon (SOC). In the treatments of straw returning, the contents of SMBC, SMBN, TN, and SOC under no-tillage were increased in the 0–7 cm soil layer. Tillage and straw returning had no significant effects in the 7–14 cm and 14–21 cm soil layers. In addition, SMBC/SMBN for all the treatments was maintained within a reasonable range, and microbial quotient (SMQ) and SMBN/TN in the no-tillage treatment had a significant improvement; (4) Conclusions: The results showed that no-tillage with an appropriate amount of straw returning improved the soil biochemical properties and maintained the nitrogen mineralization capacity in the 0–7 cm soil layer for this region.

Funder

National Key Research and Development Program of China

National Science and Technology Planning Project

Science and Technology Support Program of Jiangsu Province

Priority Academic Program Development of Jiangsu Higher Education Institution

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3