Comparing Evapotranspiration Estimates from the GEOframe-Prospero Model with Penman–Monteith and Priestley-Taylor Approaches under Different Climate Conditions

Author:

Bottazzi MicheleORCID,Bancheri Marialaura,Mobilia MirkaORCID,Bertoldi GiacomoORCID,Longobardi AntoniaORCID,Rigon Riccardo

Abstract

Evapotranspiration (ET) is a key variable in the hydrological cycle and it directly impacts the surface balance and its accurate assessment is essential for a correct water management. ET is difficult to measure, since the existing methods for its direct estimate, such as the weighing lysimeter or the eddy-covariance system, are often expensive and require well-trained research personnel. To overcome this limit, different authors developed experimental models for indirect estimation of ET. However, since the accuracy of ET prediction is crucial from different points of view, the continuous search for more and more precise modeling approaches is encouraged. In light of this, the aim of the present work is to test the efficiency in predicting ET fluxes in a newly introduced physical-based model, named Prospero, which is based on the ability to compute the ET using a multi-layer canopy model, solving the energy balance both for the sunlight and shadow vegetation, extending the recently developed Schymanski and Or method to canopy level. Additionally, Prospero is able to compute the actual ET using a Jarvis-like model. The model is integrated as a component in the hydrological modelling system GEOframe. Its estimates were validated against observed data from five Eddy covariance (EC) sites with different climatic conditions and the same vegetation cover. Then, its performances were compared with those of two already consolidated models, the Priestley–Taylor model and Penman FAO model, using four goodness-of-fit indices. Subsequently a calibration of the three methods has been carried out using LUCA calibration within GEOframe, with the purpose of prediction errors. The results showed that Prospero is more accurate and precise with respect to the other two models, even if no calibrations were performed, with better performances in dry climatic conditions. In addition, Prospero model turned to be the least affected by the calibration procedure and, therefore, it can be effectively also used in a context of data scarcity.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference81 articles.

1. The Ratio of Heat Losses by Conduction and by Evaporation from any Water Surface

2. Natural evaporation from open water, bare soil and grass;Penman;Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci.,1948

3. Evaporation and environment. Symposia of the Society for Experimental Biology;Monteith,1965

4. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters

5. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3