Blind Recognition of Forward Error Correction Codes Based on a Depth Distribution Algorithm

Author:

Mei Fan,Chen Hong,Lei Yingke

Abstract

Forward error correction codes (FEC) are one of the vital sections of modern communication systems; therefore, recognition of the coding type is an important issue in non-cooperative communication. At present, the recognition of FEC codes is mainly concentrated in the field of semi-blind identification with known types of codes. However, based on information asymmetry, the receiver cannot know the types of channel coding previously used in non-cooperative systems such as cognitive radio and remote sensing of communication. Therefore, it is important to recognize the error-correcting encoding type with no prior information. Although the traditional algorithm can also recognize the type of codes, it is only applicable to the case without errors, and its practicability is poor. In the paper, we propose a new method to identify the types of FEC codes based on depth distribution in non-cooperative communication. The proposed algorithm can effectively recognize linear block codes, convolutional codes, and Turbo codes under a low error probability level, and has a higher robustness to noise transmission environment. In addition, an improved matrix estimation algorithm based on Gaussian elimination was adopted in this paper, which effectively improves the parameter identification in a noisy environment. Finally, we used a general framework to unify all the reconstruction algorithms to simplify the complexity of the algorithm. The simulation results show that, compared with the traditional algorithm based on matrix rank, the proposed algorithm has a better anti-interference performance. The method proposed is simple and convenient for engineering and practical applications.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference35 articles.

1. Adaptive coded modulation for fading channels

2. Novel Blind Encoder Parameter Estimation for Turbo Codes

3. Identification of non-binary LDPC codes using average LLR of syndrome a posteriori probability;Xia;IEEE Commun. Lett.,2013

4. Blind identification of the code word length for non-binary error-correcting codes in noisy transition;Zrelli;EURASIP J. Wirel. Commun. Netw.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3