Abstract
Using a small number of mathematical transformations, this article examines the nature of fractional models described by fractional differential equations or pseudo state space descriptions. Computation of the impulse response of a fractional model using the Cauchy method shows that they exhibit infinitely small and high time constants. This impulse response can be rewritten as a diffusive representation whose Fourier transform permits a representation of a fractional model by a diffusion equation in an infinite space domain. Fractional models can thus be viewed as doubly infinite dimensional models: infinite as distributed with a distribution in an infinite domain. This infinite domain or the infinitely large time constants of the impulse response reveal a property intrinsic to fractional models: their infinite memory. Solutions to generate fractional behaviors without infinite memory are finally proposed.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献