Holomorphic Extensions Associated with Fourier–Legendre Series and the Inverse Scattering Problem

Author:

De Micheli EnricoORCID

Abstract

In this paper, we consider the inverse scattering problem and, in particular, the problem of reconstructing the spectral density associated with the Yukawian potentials from the sequence of the partial-waves fℓ of the Fourier–Legendre expansion of the scattering amplitude. We prove that if the partial-waves fℓ satisfy a suitable Hausdorff-type condition, then they can be uniquely interpolated by a function f˜(λ)∈C, analytic in a half-plane. Assuming also the Martin condition to hold, we can prove that the Fourier–Legendre expansion of the scattering amplitude converges uniformly to a function f(θ)∈C (θ being the complexified scattering angle), which is analytic in a strip contained in the θ-plane. This result is obtained mainly through geometrical methods by replacing the analysis on the complex cosθ-plane with the analysis on a suitable complex hyperboloid. The double analytic symmetry of the scattering amplitude is therefore made manifest by its analyticity properties in the λ- and θ-planes. The function f(θ) is shown to have a holomorphic extension to a cut-domain, and from the discontinuity across the cuts we can iteratively reconstruct the spectral density σ(μ) associated with the class of Yukawian potentials. A reconstruction algorithm which makes use of Pollaczeck and Laguerre polynomials is finally given.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3