A Scaled Proteomic Discovery Study for Prostate Cancer Diagnostic Markers Using ProteographTM and Trapped Ion Mobility Mass Spectrometry

Author:

Chang Matthew E. K.1ORCID,Lange Jane1,Cartier Jessie May1,Moore Travis W.1,Soriano Sophia M.1,Albracht Brenna2,Krawitzky Michael3,Guturu Harendra4,Alavi Amir4,Stukalov Alexey4ORCID,Zhou Xiaoyuan4,Elgierari Eltaher M.4,Chu Jessica4,Benz Ryan4,Cuevas Juan C.4ORCID,Ferdosi Shadi4ORCID,Hornburg Daniel4,Farokhzad Omid4,Siddiqui Asim4,Batzoglou Serafim4,Leach Robin J.2,Liss Michael A.5,Kopp Ryan P.1,Flory Mark R.1ORCID

Affiliation:

1. Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA

2. Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX 78229, USA

3. Bruker Daltonics, Billerica, MA 01821, USA

4. Seer Inc., Redwood City, CA 94065, USA

5. Roger L. & Laura D. Zeller Charitable Foundation in Urologic Oncology, University of Texas Health San Antonio, San Antonio, TX 78229, USA

Abstract

There is a significant unmet need for clinical reflex tests that increase the specificity of prostate-specific antigen blood testing, the longstanding but imperfect tool for prostate cancer diagnosis. Towards this endpoint, we present the results from a discovery study that identifies new prostate-specific antigen reflex markers in a large-scale patient serum cohort using differentiating technologies for deep proteomic interrogation. We detect known prostate cancer blood markers as well as novel candidates. Through bioinformatic pathway enrichment and network analysis, we reveal associations of differentially abundant proteins with cytoskeletal, metabolic, and ribosomal activities, all of which have been previously associated with prostate cancer progression. Additionally, optimized machine learning classifier analysis reveals proteomic signatures capable of detecting the disease prior to biopsy, performing on par with an accepted clinical risk calculator benchmark.

Funder

Cancer Early Detection Advanced Research Center at Oregon Health & Science University, Knight Cancer Institute

Publisher

MDPI AG

Reference82 articles.

1. ACS (2024). American Cancer Society. Cancer Facts and Figures 2024, American Cancer Society. Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2024/2024-cancer-facts-and-figures-acs.pdf.

2. The prostate cancer conundrum revisited: Treatment changes and prostate cancer mortality declines;Etzioni;Cancer,2012

3. Declining rates of extracapsular extension after radical prostatectomy: Evidence for continued stage migration;Jhaveri;J. Clin. Oncol.,1999

4. Cancer statistics 2013;Siegel;CA Cancer J. Clin.,2013

5. Dahiya, V., Hans, S., Kumari, R., and Bagchi, G. (2024). Prostate cancer biomarkers: From early diagnosis to precision treatment. Clin. Transl. Oncol., 1–13.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3