SCD2 Regulation Targeted by miR-200c-3p on Lipogenesis Alleviates Mesenchymal Stromal Cell Senescence

Author:

Yu Xiao12,Zhang Chang1,Ma Qianhui1,Gao Xingyu1,Sun Hui1,Sun Yanan1ORCID,Wang Yuezeng1,Zhang Haiying1,Shi Yingai1,Meng Xiaoting2,He Xu1ORCID

Affiliation:

1. The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China

2. Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China

Abstract

The senescence of bone marrow mesenchymal stromal cells (MSCs) leads to the impairment of stemness and osteogenic differentiation capacity. In a previous study, we screened out stearoyl-CoA desaturase 2 (SCD2), the most evidently changed differential gene in lipid metabolism, using combined transcriptomic and metabolomic analyses, and verified that SCD2 could mitigate MSC senescence. However, the underlying molecular mechanism by which the rate-limiting enzyme of lipogenesis SCD2 manipulates MSC senescence has not been completely understood. In this study, we demonstrate that SCD2 over-expression alleviates MSC replicative senescence and ameliorates their osteogenic differentiation through the regulation of lipogenesis. Furthermore, SCD2 expression is reduced, whereas miR-200c-3p expression is elevated in replicative senescent MSCs. SCD2 is the direct target gene of miR-200c-3p, which can bind to the 3′-UTR of SCD2. MiR-200c-3p replenishment in young MSCs is able to diminish SCD2 expression levels due to epigenetic modulation. In addition, SCD2-rescued MSC senescence and enhanced osteogenic differentiation can be attenuated by miR-200c-3p repletion via suppressing lipogenesis. Taken together, we reveal the potential mechanism of SCD2 influencing MSC senescence from the perspective of lipid metabolism and epigenetics, which provides both an experimental basis for elucidating the mechanism of stem cell senescence and a novel target for delaying stem cell senescence.

Funder

Science and Technology Development Projects of Jilin Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3