Gas-Sensing Performance of Metal Oxide Heterojunction Materials for SF6 Decomposition Gases: A DFT Study

Author:

Zeng Tingting1,Ma Donglin1,Gui Yingang2ORCID

Affiliation:

1. College of Physics and Engineering, Chengdu Normal University, Chengdu 611130, China

2. College of Engineering and Technology, Southwest University, Chongqing 400715, China

Abstract

The online monitoring of GIS equipment can be realized through detecting SF6 decomposition gasses. Metal oxide heterojunctions are widely used as gas-sensing materials. In this study, the structural and electrical properties of In2O3-ZnO and TiO2-ZnO heterojunctions were analyzed based on density functional theory calculations. After heterojunction structural optimization, the electrical conductivity of these two heterojunctions was enhanced compared to each intrinsic model, and the electrical conductivity is ranked as follows: In2O3-ZnO heterojunction > TiO2-ZnO heterojunction. The gas-sensing response of these two heterojunctions to four SF6 decomposition gasses, H2S, SO2, SOF2, and SO2F2, was investigated. For gas adsorption systems, the adsorption energy, charge transfer, density of states, charge difference density, and frontier molecular orbitals were calculated to analyze the adsorption and gas-sensing performance. For gas adsorption on the In2O3-ZnO heterojunction surface, the induced conductivity changes are in the following order: H2S > SO2F2 > SOF2 > SO2. For gas adsorption on the TiO2-ZnO heterojunction surface, H2S and SOF2 increase conductivity, and SO2 and SO2F2 decrease conductivity.

Funder

Talent Introduction Program of Chengdu Normal University

Innovative Experimental Project of Chengdu Normal University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3