EMG and IMU Data Fusion for Locomotion Mode Classification in Transtibial Amputees

Author:

Gonzales-Huisa Omar A.1ORCID,Oshiro Gonzalo2ORCID,Abarca Victoria E.3ORCID,Chavez-Echajaya Jorge G.4ORCID,Elias Dante A.3ORCID

Affiliation:

1. Faculty of Science and Engineering, Electronic Engineering, Pontificia Universidad Católica del Perú, Lima 15088, Peru

2. Faculty of Science and Engineering, Mechatronics Engineering, Pontificia Universidad Católica del Perú, Lima 15088, Peru

3. Biomechanics and Applied Robotics Research Laboratory, Pontificia Universidad Católica del Perú, Lima 15088, Peru

4. Faculty of Science and Engineering, Biomedical Engineering, Pontificia Universidad Católica del Perú, Lima 15088, Peru

Abstract

Despite recent advancements in prosthetic technology, lower-limb amputees often remain limited to passive prostheses, which leads to an asymmetric gait and increased energy expenditure. Developing active prostheses with effective control systems is important to improve mobility for these individuals. This study presents a machine-learning-based approach to classify five distinct locomotion tasks: ground-level walking (GWL), ramp ascent (RPA), ramp descent (RPD), stairs ascent (SSA), and stairs descent (SSD). The dataset comprises fused electromyographic (EMG) and inertial measurement unit (IMU) signals from twenty non-amputated and five transtibial amputated participants. EMG sensors were strategically positioned on the thigh muscles, while IMU sensors were placed on various leg segments. The performance of two classification algorithms, support vector machine (SVM) and long short-term memory (LSTM), were evaluated on segmented data. The results indicate that SVM models outperform LSTM models in accuracy, precision, and F1 score in the individual evaluation of amputee and non-amputee datasets for 80–20 and 50–50 data distributions. In the 80–20 distribution, an accuracy of 95.46% and 95.35% was obtained with SVM for non-amputees and amputees, respectively. An accuracy of 93.33% and 93.30% was obtained for non-amputees and amputees by using LSTM, respectively. LSTM models show more robustness and inter-population generalizability than SVM models when applying domain-adaptation techniques. Furthermore, the average classification latency for SVM and LSTM models was 19.84 ms and 37.07 ms, respectively, within acceptable limits for real-time applications. This study contributes to the field by comprehensively comparing SVM and LSTM classifiers for locomotion tasks, laying the foundation for the future development of real-time control systems for active transtibial prostheses.

Funder

Programa Piloto de proyectos de Investigación en áreas transversales en el Departamento de Ingeniería de la Pontificia Universidad Católica del Perú

Publisher

MDPI AG

Subject

Rehabilitation,Materials Science (miscellaneous),Biomedical Engineering,Oral Surgery

Reference34 articles.

1. Vázquez, E. (2016). Los Amputados y su Rehabilitación. Un Reto Para el Estado, Intersistemas.

2. Estimating the prevalence of limb loss in the united states: 2005 to 2050;MacKenzie;Arch. Phys. Med. Rehabil.,2008

3. Molina, C.S., and Faulk, J. (2022). Lower Extremity Amputation, StatPearls Publishing.

4. A CNN-based method for intent recognition using inertial measurement units and intelligent lower limb prosthesis;Su;IEEE Trans. Neural Syst. Rehabil. Eng.,2019

5. Características clínicas y demográficas del paciente amputado;Farro;Rev. Med. Hered.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3