Proteomic Analysis of Rat Duodenum Reveals the Modulatory Effect of Boron Supplementation on Immune Activity

Author:

Zhao Chunfang12ORCID,Chen Shuqin12,Han Yujiao12,Zhang Feng12ORCID,Ren Man12,Hu Qianqian12,Ye Pengfei12,Li Xiaojin12,Jin Erhui12,Li Shenghe12ORCID

Affiliation:

1. College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China

2. Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China

Abstract

The proper supplementation of boron, an essential trace element, can enhance animal immune function. We utilized the method of TMT peptide labeling in conjunction with LC-MS/MS quantitative proteomics for the purpose of examining the effects of boric acid on a rat model and analyzing proteins from the duodenum. In total, 5594 proteins were obtained from the 0, 10, and 320 mg/L boron treatment groups. Two hundred eighty-four proteins that exhibit differential expression were detected. Among the comparison, groups of 0 vs. 10 mg/L, 0 vs. 320 mg/L, and 10 vs. 320 mg/L of boron, 110, 32, and 179 proteins, respectively, demonstrated differential expression. The results revealed that these differential expression proteins (DEPs) mainly clustered into two profiles. GO annotations suggested that most of the DEPs played a role in the immune system process, in which 2′-5′-oligoadenylate synthetase-like, myxovirus resistance 1, myxovirus resistance 2, dynein cytoplasmic 1 intermediate chain 1, and coiled-coil domain containing 88B showed differential expression. The DEPs had demonstrated an augmentation in the signaling pathways, which primarily include phagosome, antigen processing, and presentation, as well as cell adhesion molecules (CAMs). Our study found that immune responses in the duodenum were enhanced by lower doses of boron and that this effect is likely mediated by changes in protein expression patterns in related signaling pathways. It offers an in-depth understanding of the underlying molecular mechanisms that lead to immune modulation in rats subjected to dietary boron treatment.

Funder

National Natural Science Foundation of China

Anhui Provincial Natural Science Foundation

the University Research Project of Anhui Province

the Anhui Province Key Research and Development Program Project

Tianchang City Intelligent Equipment and Instrumentation Research Institute Special Funding Project

the Foundation of Anhui Science and Technology University

the Graduate Program of the Anhui Provincial Department of Education

the Innovation Funds for Undergraduate Students of Anhui Province

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3