TRIM25 Suppresses Rabies Virus Fixed HEP-Flury Strain Production by Activating RIG-1-Mediated Type I Interferons

Author:

Zhang Boyue1ORCID,Cai Ting1,He Hongling1,Huang Xuezhe1,Luo Yongwen1,Huang Shile23ORCID,Luo Jun1ORCID,Guo Xiaofeng1ORCID

Affiliation:

1. College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China

2. Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA

3. Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA

Abstract

Rabies remains a great threat to public health worldwide. So far, the mechanism of rabies virus (RABV) infection is not fully understood, and there is no effective treatment for rabies. Identifying more host restriction factors of RABV will spur the development of novel therapeutic interventions against rabies. Accumulating studies suggest that tripartite motif-containing (TRIM) proteins have great effects on virus replication. TRIMs control the antiviral responses through either direct interaction with viral proteins or indirect regulation of innate immune signaling molecules in the host. The role of TRIM25 in rabies virus (RABV) infection is poorly understood. Using next-generation sequencing, we found that TRIM25 is upregulated during HEP-Flury infection. Knockdown of TRIM25 enhances HEP-Flury production, while overexpression of TRIM25 suppresses HEP-Flury replication. Knockdown of interferon α and interferon β weakens the anti-RABV response induced by TRIM25 overexpression, and potentiates RABV production. Furthermore, we found that TRIM25 regulates type-I interferon response by targeting retinoic acid-inducible gene I (RIG-I) during HEP-Flury infection. Knockdown of RIG-I weakens the anti-HEP-Flury response induced by TRIM25 overexpression, indicating that TRIM25 regulates RABV production via the RIG-I-IFN axis. In addition, we observed that TRIM25 does not directly interact with HEP-Flury structural proteins, suggesting that TRIM25 regulates HEP-Flury production indirectly. Taken together, our work identifies TRIM25 as a new host factor involved in HEP-Flury infection, which may be a potential target for the development of antiviral drugs against RABV.

Funder

National Key Research and Development Program

Basic and Applied Basic Research Project of Guangzhou Basic Research Program

National Natural Science Foundation of China

Guangdong Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3