Severe COVID-19 May Impact Hepatic Fibrosis /Hepatic Stellate Cells Activation as Indicated by a Pathway and Population Genetic Study

Author:

Moya Leire,Farashi SamanehORCID,Suravajhala PrashanthORCID,Janaththani Panchadsaram,Batra Jyotsna

Abstract

Coronavirus disease 19 (COVID-19) has affected over 112 million people and killed more than 2.5 million worldwide. When the pandemic was declared, Spain and Italy accounted for 29% of the total COVID-19 related deaths in Europe, while most infected patients did not present severe illness. We hypothesised that shared genomic characteristics, distinct from the rest of Europe, could be a contributor factor to a poor prognosis in these two populations. To identify pathways related to COVID-19 severity, we shortlisted 437 candidate genes associated with host viral intake and immune evasion from SARS-like viruses. From these, 21 were associated specifically with clinically aggressive COVID-19. To determine the potential mechanism of viral infections, we performed signalling pathway analysis with either the full list (n = 437) or the subset group (n = 21) of genes. Four pathways were significantly associated with the full gene list (Caveolar-mediated Endocytosis and the MSP-RON Signalling) or with the aggressive gene list (Hepatic Fibrosis/Hepatic Stellate Cell (HSC) Activation and the Communication between Innate and Adaptive Immune Cells). Single nucleotide polymorphisms (SNPs) from the ±1 Mb window of all genes related to these four pathways were retrieved from the dbSNP database. We then performed Principal Component analysis for these SNPs in individuals from the 1000 Genomes of European ancestry. Only the Hepatic Fibrosis/HSC Activation pathway showed population-specific segregation. The Spanish and Italian populations clustered together and away from the rest of the European ancestries, with the first segregating further from the rest. Additional in silico analysis identified potential genetic markers and clinically actionable therapeutic targets in this pathway, that may explain the severe disease.

Funder

Advance Queensland Industry Research Fellowship

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3