Melatonin Protects the Apoptosis of Sheep Granulosa Cells by Suppressing Oxidative Stress via MAP3K8 and FOS Pathway

Author:

Zhai Bo1,Li Xu1,Zhao Zhongli1,Cao Yang1ORCID,Liu Xinxin1,Liu Zheng1,Ma Huihai1,Lu Wenfa2

Affiliation:

1. Institute of Animal Science, Jilin Academy of Agricultural Science, Changchun 136100, China

2. College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China

Abstract

Melatonin is not only a highly effective active oxygen scavenger but also an important reproductive hormone. Melatonin has a regulatory effect on animal reproduction, especially on the ovaries. It can affect the proliferation and apoptosis of cells in follicles. However, the mechanisms of the dual antioxidation and anti-apoptosis effects of melatonin on granulosa cells are still not clear, especially in sheep. Therefore, we investigated the mechanisms of the protective effect of melatonin against oxidative damage in granulosa cells. At a concentration of 250 µmol/L, H2O2 promoted granulosa cell apoptosis; however, 10 ng/mL melatonin effectively alleviated the pro-apoptotic effect of H2O2. Furthermore, through the application of high-throughput sequencing technology, we identified 109 significantly differentially expressed genes (35 upregulated and 74 downregulated genes) involved in the protective effect of melatonin against apoptosis. The expression levels of nine related genes, i.e., ATF3, FIBIN, FOS, HSPA6, MAP3K8, FOSB, PET117, DLX2, and TRIB1, changed significantly. MAP3K8 and FOS gene overexpression impacted the protective effect of melatonin in granulosa cells; the two genes exhibited an upstream and downstream regulatory relationship. Our findings indicated that melatonin alleviated H2O2-induced apoptosis in sheep granulosa cells through the MAP3K8-FOS pathway.

Funder

National Key R & D Program of China

Major Key of Jilin Province Innovation Project

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3