DelInsCaller: An Efficient Algorithm for Identifying Delins and Estimating Haplotypes from Long Reads with High Level of Sequencing Errors

Author:

Wang Shenjie,Zhang Xuanping,Qiang Geng,Wang JiayinORCID

Abstract

Delins, as known as complex indel, is a combined genomic structural variation formed by deleting and inserting DNA fragments at a common genomic location. Recent studies emphasized the importance of delins in cancer diagnosis and treatment. Although the long reads from PacBio CLR sequencing significantly facilitate delins calling, the existing approaches still encounter computational challenges from the high level of sequencing errors, and often introduce errors in genotyping and phasing delins. In this paper, we propose an efficient algorithmic pipeline, named delInsCaller, to identify delins on haplotype resolution from the PacBio CLR sequencing data. delInsCaller design a fault-tolerant method by calculating a variation density score, which helps to locate the candidate mutational regions under a high-level of sequencing errors. It adopts a base association-based contig splicing method, which facilitates contig splicing in the presence of false-positive interference. We conducted a series of experiments on simulated datasets, and the results showed that delInsCaller outperformed several state-of-the-art approaches, e.g., SVseq3, across a wide range of parameter settings, such as read depth, sequencing error rates, etc. delInsCaller often obtained higher f-measures than other approaches; specifically, it was able to maintain advantages at ~15% sequencing errors. delInsCaller was able to significantly improve the N50 values with almost no loss of haplotype accuracy compared with the existing approach as well.

Funder

the Natural Science Basic Research Program of Shaanxi

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3