Temperature-Related Short-Term Succession Events of Bacterial Phylotypes in Potter Cove, Antarctica

Author:

Ilicic Doris1,Ionescu Danny1,Woodhouse Jason2ORCID,Grossart Hans-Peter13ORCID

Affiliation:

1. Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Neuglobsow, Germany

2. Institut für Zoologie, Universität Hamburg, 20146 Hamburg, Germany

3. Institute of Biochemistry and Biology, University of Potsdam, 14469 Potsdam, Germany

Abstract

In recent years, our understanding of the roles of bacterial communities in the Antarctic Ocean has substantially improved. It became evident that Antarctic marine bacteria are metabolically versatile, and even closely related strains may differ in their functionality and, therefore, affect the ecosystem differently. Nevertheless, most studies have been focused on entire bacterial communities, with little attention given to individual taxonomic groups. Antarctic waters are strongly influenced by climate change; thus, it is crucial to understand how changes in environmental conditions, such as changes in water temperature and salinity fluctuations, affect bacterial species in this important area. In this study, we show that an increase in water temperature of 1 °C was enough to alter bacterial communities on a short-term temporal scale. We further show the high intraspecific diversity of Antarctic bacteria and, subsequently, rapid intra-species succession events most likely driven by various temperature-adapted phylotypes. Our results reveal pronounced changes in microbial communities in the Antarctic Ocean driven by a single strong temperature anomaly. This suggests that long-term warming may have profound effects on bacterial community composition and presumably functionality in light of continuous and future climate change.

Funder

German Science Foundation

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3