Effects of Wnt10a and Wnt10b Double Mutations on Tooth Development

Author:

Yoshinaga Kaoru1ORCID,Yasue Akihiro12ORCID,Mitsui Silvia Naomi1,Minegishi Yoshiyuki3,Oyadomari Seiichi4ORCID,Imoto Issei5,Tanaka Eiji1ORCID

Affiliation:

1. Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan

2. Nakano-Cho niconicoKamKam Dental and Orthodontics, 1-31 Nakano-cho, Tokushima 770-0932, Japan

3. Division of Molecular Medicine, Institute of Advanced Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan

4. Division of Molecular Biology, Institute of Advanced Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan

5. Aichi Cancer Center Research Institute, 1-1 Kanokoden Chikusa-ku, Nagoya 464-8681, Japan

Abstract

WNT molecules are the regulators of various biological functions, including body axis formation, organ development, and cell proliferation and differentiation. WNTs have been extensively studied as causative genes for an array of diseases. WNT10A and WNT10B, which are considered to be genes of the same origin, have been identified as causative genes for tooth deficiency in humans. However, the disrupted mutant of each gene does not show a decrease in teeth number. A negative feedback loop, interacting with several ligands based on a reaction–diffusion mechanism, was proposed to be important for the spatial patterning of tooth formation, and WNT ligands have been considered to play a pivotal role in controlling tooth patterning from mutant phenotypes of LDL receptor-related proteins (LRPs) and WNT co-receptors. The Wnt10a and Wnt10b double-mutants demonstrated severe root or enamel hypoplasia. In Wnt10a−/− and Wnt10a+/−;Wnt10b−/− mice, changes in the feedback loop may collapse the modulation of fusion or split a sequence of tooth formation. However, in the double-knockout mutant, a decrease in the number of teeth was observed, including the upper incisor or third molar in both jaws. These findings suggest that there may be a functional redundancy between Wnt10a and Wnt10b and that the interaction between the two genes functions in conjunction with other ligands to control the spatial patterning and development of teeth.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3