The Glutathione Peroxidase Gene Family in Nitraria sibirica: Genome-Wide Identification, Classification, and Gene Expression Analysis under Stress Conditions

Author:

Lian Ziming12ORCID,Zhang Jingbo3,Hao Zhaodong1ORCID,Zhu Liming1,Liu Yuxin12,Fang Hao2,Lu Ye1,Li Xinle3,Shi Jisen1,Chen Jinhui1,Cheng Tielong2

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

2. College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China

3. Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, China

Abstract

Plant glutathione peroxidases (GPXs) are the main enzymes in the antioxidant defense system that sustain H2O2 homeostasis and normalize plant reaction to abiotic stress conditions. However, the genome-wide identification of the GPX gene family and its responses to environmental stresses, especially salt stress, in Nitraria sibirica, which is a shrub that can survive in saline environments, has not yet been reported. Here, we first report the genome-wide analysis of the GPX gene family in N. sibirica, leading to a total of seven NsGPX genes that are distributed on six of the twelve chromosomes. Phylogenetic analysis showed that NsGPX genes were grouped into four major groups (Group I-IV). Three types of cis-acting elements were identified in the NsGPX promoters, mainly related to hormones and stress response. The quantitative real-time PCR (qRT-PCR) analysis indicated that NsGPX1 and NsGPX3 were significantly up-regulated in stem and leaf, while NsGPX7 transcriptionally in root in response to salt stress. The current study identified a total seven NsGPX genes in N. sibirica via genome-wide analysis, and discovered that NsGPXs may play an important role in response to salt stress. Taken together, our findings provide a basis for further functional studies of NsGPX genes, especially in regarding to the resistance to salt stress of this halophyte plant N. sibirica, eventually aid in the discovery of new methods to restore overtly saline soil.

Funder

Nature Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3