Comparative and Functional Analysis of miRNAs and mRNAs Involved in Muscle Fiber Hypertrophy of Juvenile and Adult Goats

Author:

Zhang Sanbao1ORCID,Zhang Qiongwen1,Yang Lili1,Gao Xiaotong1ORCID,Chen Ting1,Li Tianbao1,Sun Wenyue1,Liu Yufan1,Zheng Zihua2,Pan Yan3,Wei Yingming2,Huang Yanna1ORCID,Jiang Mingsheng1,Jiang Qinyang1ORCID

Affiliation:

1. College of Animal Science and Technology, Guangxi University, Nanning 530004, China

2. Institute for New Rural Development, Guangxi University, Nanning 530004, China

3. College of Animal Science and Technology, Guangxi Agricultural Vocational University, Nanning 530007, China

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate several pathway intermediates and affect the skeletal muscle development in mice, pigs, sheep, and cattle. However, to date, only a small number of miRNAs have been reported in the muscle development of goats. In this report, the longissimus dorsi transcripts of one- and ten-month-old goats were analyzed by sequencing RNAs and miRNAs. The results showed that the ten-month-old Longlin goats had 327 up- and 419 down-regulated differentially expressed genes (DEGs) compared with the one-month-old. In addition, 20 co-up-regulated and 55 co-down-regulated miRNAs involved in the muscle fiber hypertrophy of goats were identified in ten-month-old Longlin and Nubian goats compared with one-month-old. Five miRNA–mRNA pairs (chi-let-7b-3p-MIRLET7A, chi-miR193b-3p-MMP14, chi-miR-355-5p-DGAT2, novel_128-LOC102178119, novel_140-SOD3) involved in the goat skeletal muscle development were identified by miRNA–mRNA negative correlation network analysis. Our results provided new insight into the functional roles of goat muscle-associated miRNAs, allowing a deeper understanding of the transformation of miRNA roles during mammalian muscle development.

Funder

National Key Research and Development Program of China

Guangxi Innovation Team Construction Project of National Modern Agricultural Industry Technology System

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3