mRNA-Seq and miRNA-Seq Analyses Provide Insights into the Mechanism of Pinellia ternata Bulbil Initiation Induced by Phytohormones

Author:

Xu Wenxin1,Fan Haoyu1,Pei Xiaomin1,Hua Xuejun1,Xu Tao1,He Qiuling2

Affiliation:

1. College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China

2. Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Hangzhou 310018, China

Abstract

Pinellia ternata (Thunb.) Breit (abbreviated as P. ternata) is a plant with an important medicinal value whose yield is restricted by many factors, such as low reproductive efficiency and continuous cropping obstacles. As an essential breeding material for P. ternata growth and production, the bulbils have significant advantages such as a high survival rate and short breeding cycles. However, the location effect, influencing factors, and molecular mechanism of bulbil occurrence and formation have not been fully explored. In this study, exogenously applied phytohormones were used to induce in vitro petiole of P. ternata to produce bulbil structure. Transcriptome sequencing of mRNA and miRNA were performed in the induced petiole (TCp) and the induced bulbil (TCb). Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed for the identification of key genes and pathways involved in bulbil development. A total of 58,019 differentially expressed genes (DEGs) were identified. The GO and KEGG analysis indicated that DEGs were mainly enriched in plant hormone signal transduction and the starch and sucrose metabolism pathway. The expression profiles of miR167a, miR171a, and miR156a during bulbil induction were verified by qRT-PCR, indicating that these three miRNAs and their target genes may be involved in the process of bulbil induction and play an important role. However, further molecular biological experiments are required to confirm the functions of the identified bulbil development-related miRNAs and targets.

Funder

Natural Science Foundation of Zhejiang Province

Zhejiang Sci-Tech University

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3