Characterization of the Genetic Variability within Ziziphus nummularia Genotypes by Phenotypic Traits and SSR Markers with Special Reference to Geographic Distribution

Author:

Uddin Nisar,Muhammad Noor,Ali Sameh Samir,Ullah Riaz,Bari Ahmed,Hussain Hidayat,Zhu Daochen

Abstract

Understanding the impacts and constraints of climate change on Ziziphus nummularia′s geographical distribution is crucial for its future sustainability. In this study, we analyze information obtained from the field investigation, the distribution and response of climatic changes of Ziziphus nummularia by the use of ArcGIS analysis. The genetic diversity of 180 genotypes from three populations was studied by morphological attributes and simple sequence repeat (SSR). The results showed that the significant bioclimatic variable limiting the distribution of Z. nummularia was the mean temperature (bio 10_18.tif and bio19). Under the current climatic change, the suitable growth region of Z. nummularia is Swat (35.22° N, 72.42° E), while the future distribution would be Buner (34.39° N, 72.61° E), respectively. A total of 11 phenotypic traits were noted and had significant phenotypic variation among the traits. A total of 120 alleles were amplified. The alleles per locus ranged from 2 to 6, averaging 4.42, whereas PIC ranged from 0.33 to 0.79. Within a mean value of 0.67 per locus, expected heterozygosity was 0.57, observed heterozygosity was 0.661, and average gene diversity was 0.49. Flow estimates (6.41) indicated frequent gene flow within genotypes. The clustering, STRUCTURE, and PCoA analysis indicated Swat and Buner migration routes and evolution as well. The results indicated the prevalence of genetic variability and relationships among Z. nummularia across geographical boundaries had retained unique alleles. This may facilitate the development of agronomically desirable cultivars. However, climate change has impacted species distributions, requiring strategies to conserve genetic resources in different areas.

Funder

King Saud University

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3