Gene Association Analysis of Quantitative Trait Based on Functional Linear Regression Model with Local Sparse Estimator

Author:

Wang Jingyu12,Zhou Fujie12,Li Cheng12,Yin Ning12,Liu Huiming12,Zhuang Binxian12,Huang Qingyu12,Wen Yongxian12ORCID

Affiliation:

1. College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Institute of Statistics and Application, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Abstract

Functional linear regression models have been widely used in the gene association analysis of complex traits. These models retain all the genetic information in the data and take full advantage of spatial information in genetic variation data, which leads to brilliant detection power. However, the significant association signals identified by the high-power methods are not all the real causal SNPs, because it is easy to regard noise information as significant association signals, leading to a false association. In this paper, a method based on the sparse functional data association test (SFDAT) of gene region association analysis is developed based on a functional linear regression model with local sparse estimation. The evaluation indicators CSR and DL are defined to evaluate the feasibility and performance of the proposed method with other indicators. Simulation studies show that: (1) SFDAT performs well under both linkage equilibrium and linkage disequilibrium simulation; (2) SFDAT performs successfully for gene regions (including common variants, low-frequency variants, rare variants and mix variants); (3) With power and type I error rates comparable to OLS and Smooth, SFDAT has a better ability to handle the zero regions. The Oryza sativa data set is analyzed by SFDAT. It is shown that SFDAT can better perform gene association analysis and eliminate the false positive of gene localization. This study showed that SFDAT can lower the interference caused by noise while maintaining high power. SFDAT provides a new method for the association analysis between gene regions and phenotypic quantitative traits.

Funder

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3