Proteome and Ubiquitylome Analyses of Maize Endoplasmic Reticulum under Heat Stress

Author:

Gao Chunyan12,Peng Xiaohui1,Zhang Luoying1,Zhao Qi1,Ma Liguo1,Yu Qi1,Lian Xuechun1,Gao Lei34ORCID,Xiong Langyu5,Li Shengben16

Affiliation:

1. State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China

2. College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China

3. College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China

4. Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China

5. Institute of Advanced Studies in Humanities and Social Sciences, Beijing Normal University, Zhuhai 519087, China

6. Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China

Abstract

High temperatures severely affect plant growth and pose a threat to global crop production. Heat causes the accumulation of misfolded proteins in the endoplasmic reticulum(ER), as well as triggering the heat-shock response (HSR) in the cytosol and the unfolded protein response (UPR) in the ER. Excessive misfolded proteins undergo further degradation through ER-associated degradation (ERAD). Although much research on the plant heat stress response has been conducted, the regulation of ER-localized proteins has not been well-studied thus far. We isolated the microsome fraction from heat-treated and untreated maize seedlings and performed proteome and ubiquitylome analyses. Of the 8306 total proteins detected in the proteomics analysis, 1675 proteins were significantly up-regulated and 708 proteins were significantly down-regulated. Global ubiquitination analysis revealed 1780 proteins with at least one ubiquitination site. Motif analysis revealed that alanine and glycine are the preferred amino acids upstream and downstream of ubiquitinated lysine sites. ERAD components were found to be hyper-ubiquitinated after heat treatment, implying the feedback regulation of ERAD activity through protein degradation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3