Ectopic Expression of BcCUC2 Involved in Sculpting the Leaf Margin Serration in Arabidopsis thaliana

Author:

Li Wanqi1,Wang Tongtong1,Ma Yu1,Wang Nan1,Wang Wenjing1,Tang Jun23ORCID,Zhang Changwei2ORCID,Hou Xilin2ORCID,Hou Hualan1

Affiliation:

1. School of Horticulture, Anhui Agricultural University, Hefei 230036, China

2. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China

3. Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China

Abstract

Leaf margin serration is a morphological characteristic in plants. The CUC2 (CUP-SHAPED COTYLEDON 2) gene plays an important role in the outgrowth of leaf teeth and enhances leaf serration via suppression of growth in the sinus. In this study, we isolated the BcCUC2 gene from Pak-choi (Brassica rapa ssp. chinensis), which contains a 1104 bp coding sequence, encoding 367 amino acid residues. Multiple sequence alignment exhibited that the BcCUC2 gene has a typical conserved NAC domain, and phylogenetic relationship analysis showed that the BcCUC2 protein has high identity with Cruciferae plants (Brassica oleracea, Arabidopsis thaliana, and Cardamine hirsuta). The tissue-specific expression analysis displayed that the BcCUC2 gene has relatively high transcript abundance in floral organs. Meanwhile, the expression profile of BcCUC2 was relatively higher in the ‘082’ lines with serrate leaf margins than the ‘001’ lines with smooth leaf margins in young leaves, roots, and hypocotyls. In addition, the transcript level of BcCUC2 was up-regulated by IAA and GA3 treatment, especially at 1–3 h. The subcellular localization assay demonstrated that BcCUC2 was a nuclear-target protein. Furthermore, leaf serration occurred, and the number of the inflorescence stem was increased in the transgenic Arabidopsis thaliana plants’ overexpressed BcCUC2 gene. These data illustrated that BcCUC2 is involved in the development of leaf margin serration, lateral branches, and floral organs, contributing to further uncovering and perfecting the regulation mechanism of leaf serration in Pak-choi.

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3