Ablation of Gabra5 Influences Corticosterone Levels and Anxiety-like Behavior in Mice

Author:

Syding Linn Amanda1,Kubik-Zahorodna Agnieszka2,Reguera David Pajuelo2ORCID,Nickl Petr12ORCID,Hruskova Bohdana3,Kralikova Michaela3,Kopkanova Jana2,Novosadova Vendula2,Kasparek Petr2,Prochazka Jan12,Rozman Jan2ORCID,Turecek Rostislav3,Sedlacek Radislav12ORCID

Affiliation:

1. Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, 25250 Vestec, Czech Republic

2. Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, 25250 Vestec, Czech Republic

3. Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic

Abstract

Stress responses are activated by the hypothalamic-pituitary-adrenal axis (HPA axis), culminating in the release of glucocorticoids. During prolonged periods of secretion of glucocorticoids or inappropriate behavioral responses to a stressor, pathologic conditions may occur. Increased glucocorticoid concentration is linked to generalized anxiety, and there are knowledge gaps regarding its regulation. It is known that the HPA axis is under GABAergic control, but the contribution of the individual subunits of the GABA receptor is largely unknown. In this study, we investigated the relationship between the α5 subunit and corticosterone levels in a new mouse model deficient for Gabra5, which is known to be linked to anxiety disorders in humans and phenologs observed in mice. We observed decreased rearing behavior, suggesting lower anxiety in the Gabra5−/− animals; however, such a phenotype was absent in the open field and elevated plus maze tests. In addition to decreased rearing behavior, we also found decreased levels of fecal corticosterone metabolites in Gabra5−/− mice indicating a lowered stress response. Moreover, based on the electrophysiological recordings where we observed a hyperpolarized state of hippocampal neurons, we hypothesize that the constitutive ablation of the Gabra5 gene leads to functional compensation with other channels or GABA receptor subunits in this model.

Funder

Czech Academy of Sciences

NGO “Association of Gene Therapy

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3