Enhancing Transcriptional Reprogramming of Mesenchymal Glioblastoma with Grainyhead-like 2 and HDAC Inhibitors Leads to Apoptosis and Cell-Cycle Dysregulation

Author:

Kotian Spandana1,Carnes Rachel M.1,Stern Josh L.1

Affiliation:

1. Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA

Abstract

Glioblastoma (GBM) tumor cells exhibit mesenchymal properties which are thought to play significant roles in therapeutic resistance and tumor recurrence. An important question is whether impairment of the mesenchymal state of GBM can sensitize these tumors to therapeutic intervention. HDAC inhibitors (HDACi) are being tested in GBM for their ability promote mesenchymal-to-epithelial transcriptional (MET) reprogramming, and for their cancer-specific ability to dysregulate the cell cycle and induce apoptosis. We set out to enhance the transcriptional reprogramming and apoptotic effects of HDACi in GBM by introducing an epithelial transcription factor, Grainyhead-like 2 (GRHL2), to specifically counter the mesenchymal state. GRHL2 significantly enhanced HDACi-mediated MET reprogramming. Surprisingly, we found that inducing GRHL2 in glioma stem cells (GSCs) altered cell-cycle drivers and promoted aneuploidy. Mass spectrometry analysis of GRHL2 interacting proteins revealed association with several key mitotic factors, suggesting their exogenous expression disrupted the established mitotic program in GBM. Associated with this cell-cycle dysregulation, the combination of GRHL2 and HDACi induced elevated levels of apoptosis. The key implication of our study is that although genetic strategies to repress the mesenchymal properties of glioblastoma may be effective, biological interactions of epithelial factors in mesenchymal cancer cells may dysregulate normal homeostatic cellular mechanisms.

Funder

Mary Ann Harvard Young Investigator

O’Neal Comprehensive Cancer Center

Center for Clinical and Translational Science

University of Alabama at Birmingham Heersink School of Medicine

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3