Identifying Candidate Genes for Litter Size and Three Morphological Traits in Youzhou Dark Goats Based on Genome-Wide SNP Markers

Author:

Sun Xiaoyan1ORCID,Niu Qunhao2,Jiang Jing1,Wang Gaofu1,Zhou Peng1,Li Jie1,Chen Cancan1,Liu Liangjia1,Xu Lingyang2ORCID,Ren Hangxing1

Affiliation:

1. Chongqing Academy of Animal Sciences, Rongchang 402460, China

2. Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China

Abstract

This study aimed to reveal the potential genetic basis for litter size, coat colour, black middorsal stripe and skin colour by combining genome-wide association analysis (GWAS) and selection signature analysis and ROH detection within the Youzhou dark (YZD) goat population (n = 206) using the Illumina GoatSNP54 BeadChip. In the GWAS, we identified one SNP (snp54094-scaffold824-899720) on chromosome 11 for litter size, two SNPs on chromosome 26 (snp11508-scaffold142-1990450, SORCS3) and chromosome 12 (snp55048-scaffold842-324525, LOC102187779) for coat colour and one SNP on chromosome 18 (snp56013-scaffold873-22716, TCF25) for the black middorsal stripe. In contrast, no SNPs were identified for skin colour. In selection signature analysis, 295 significant iHS genomic regions with a mean |iHS| score > 2.66, containing selection signatures encompassing 232 candidate genes were detected. In particular, 43 GO terms and one KEGG pathway were significantly enriched in the selected genes, which may contribute to the excellent environmental adaptability and characteristic trait formation during the domestication of YZD goats. In ROH detection, we identified 4446 ROH segments and 282 consensus ROH regions, among which nine common genes overlapped with those detected using the iHS method. Some known candidate genes for economic traits such as reproduction (TSHR, ANGPT4, CENPF, PIBF1, DACH1, DIS3, CHST1, COL4A1, PRKD1 and DNMT3B) and development and growth (TNPO2, IFT80, UCP2, UCP3, GHRHR, SIM1, CCM2L, CTNNA3 and CTNNA1) were revealed by iHS and ROH detection. Overall, this study is limited by the small population size, which affects the results of GWAS to a certain extent. Nevertheless, our findings could provide the first overview of the genetic mechanism underlying these important traits and provide novel insights into the future conservation and utilisation of Chinese goat germplasm resources.

Funder

National Natural Science Foundation of China

Chongqing Performance Incentive and Guide Special Projects

Natural Science Foundation of Chongqing

Key R & D Project in Agriculture and Animal Husbandry of Rongchang

Special key project of technological innovation and application development in Chongqing, China

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3