Physio-Biochemical Integrators and Transcriptome Analysis Reveal Nano-Elicitation Associated Response during Dendrocalamus asper (Schult. and Schult. F.) Backer ex K. Heyne Micropropagation

Author:

Kumari Anita12ORCID,Joshi Shubham12ORCID,Dar Aqib Iqbal12,Joshi Rohit12ORCID

Affiliation:

1. Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India

2. Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India

Abstract

Bamboos are perennial, arborescent, monocarpic and industrially important non-timber plants. They are important for various purposes, such as carbon sequestration, biodiversity support, construction, and food and fiber production. However, traditional vegetative propagation is insufficient for bamboo multiplication. Moreover, little is known about the mechanism of gold nanoparticles (AuNPs) in vitro proliferation and regulation of physiological and biochemical properties. In this study, we investigated the impacts of citrate and cetyltrimethylammonium bromide (CTAB) coated AuNPs on in vitro proliferation, photosynthetic pigment content and antioxidant potential of Dendrocalamus asper (Schult. and Schult. F.) Backer ex K. Heyne. Various morpho-physiological and biochemical parameters were differentially affected along the citrate- and CTAB-coated AuNPs concentration gradients (200–600 µM). In vitro shoot proliferation, photosynthetic pigment content and antioxidant activities were higher in D. asper grown on Murashige and Skoog medium supplemented with 2 mg·L−1 benzyladenine and 400 µM citrate-coated AuNPs than in those grown on Murashige and Skoog medium supplemented with 600 µM CTAB- coated AuNPs. Identification of genes regulating in vitro D. asper proliferation will help understand the molecular regulation of AuNPs-mediated elicitation for modulating various physiological and biochemical activities during micropropagation. Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analyses identified differentially expressed genes associated with in vitro modulation of AuNPs-regulated biological processes and molecular functions. The findings of this study provide new insight into AuNPs-mediated elicitation of in vitro mass scale bamboo propagation.

Funder

CSIR

DBT

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3