Affiliation:
1. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
Abstract
(1) Background: NR2E3 encodes a nuclear receptor transcription factor that is considered to promote cell differentiation, affect retinal development, and regulate phototransduction in rods and cones. This study aimed to analyze the clinical characteristics and observe the prognosis of autosomal dominant retinopathy (ADRP) and autosomal recessive retinopathy (ARRP) associated with NR2E3; (2) Methods: NR2E3 variants were collected from our exome sequencing data and identified per the American College of Medical Genetics and Genomics criteria. Data from our cohort and a systemic literature review were conducted to explore the NR2E3 variants spectrum and potential genotype-phenotype correlations; (3) Results: Nine pathogenic variants/likely pathogenic variants in NR2E3, including five novel variants, were detected in eight families (four each with ADRP and ARRP). Follow-up data showed schisis/atrophy in the macula and retinal degeneration initiation around the vascular arcades with differences in ADRP and ARRP. A systemic literature review indicated patients with ADRP presented better visual acuity (p < 0.01) and later onset age (p < 0.0001) than did those with ARRP; (4) Conclusions: Macular schisis and retinal degeneration around vascular arcades may present as the prognosis of NR2E3-retinopathy, dominant, or recessive. Our data might further enrich our understanding of NR2E3 variants and associated inherited retinopathy.
Funder
the Science and Technology Planning Projects of Guangzhou
the National Natural Science Foundation of China
the fundamental research funds of the state key laboratory of ophthalmology
Subject
Genetics (clinical),Genetics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献