Screening and Identification of Host Factors Interacting with the Virulence Factor P0 Encoded by Sugarcane Yellow Leaf Virus by Yeast Two-Hybrid Assay

Author:

Liang Kai-Li1,Liu Jing-Ying1,Bao Ying-Ying2,Wang Zhi-Yuan1,Xu Xiong-Biao13ORCID

Affiliation:

1. Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, China

2. College of Agriculture, Guangxi University, Nanning 530004, China

3. State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China

Abstract

Sugarcane yellow leaf virus (SCYLV), a member of the genus Polerovirus in the family Luteoviridae, causes severe damage and represents a great threat to sugarcane cultivation and sugar industry development. In this study, inoculation of Nicotiana benthamiana plants with a potato virus X (PVX)-based vector carrying the SCYLV P0 gene induced typical mosaic, leaf rolling symptoms and was associated with a hypersensitive-like response (HLR) necrosis symptom, which is accompanied with a systemic burst of H2O2 and also leads to higher PVX viral genome accumulation levels. Our results demonstrate that SCYLV P0 is a pathogenicity determinant and plays important roles in disease development. To further explore its function in pathogenic processes, a yeast two-hybrid assay was performed to screen the putative P0-interacting host factors. The recombinant plasmid pGBKT7-P0 was constructed as a bait and transformed into the yeast strain Y2HGold. The ROC22 cultivar (an important parental resource of the main cultivar in China) cDNA prey library was constructed and screened by co-transformation with the P0 bait. We identified 28 potential interacting partners including those involved in the optical signal path, plant growth and development, transcriptional regulation, host defense response, and viral replication. To our knowledge, this is the first time we have reported the host proteins interacting with the P0 virulence factor encoded by sugarcane yellow leaf virus. This study not only provides valuable insights into elucidating the molecular mechanism of the pathogenicity of SCYLV, but also sheds light on revealing the probable new pathogenesis of Polerovirus in the future.

Funder

Guangxi Natural Science Foundation

Innovation Project of Guangxi Graduate Education

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3